
Incremental Package Builds

Guillaume Maudoux
@layus

NixCon 2017

Louvain-la-Neuve hold a huge bike event

@layus

laïus () a long, vague and emphatic speech

layus a nixpkgs contributor

@layus

laïus () a long, vague and emphatic speech

layus a nixpkgs contributor

@layus

laïus () a long, vague and emphatic speech

layus a nixpkgs contributor

I contributed to build a castle in France

So I…

▶ like building stuffs

▶ started a PhD on incremental builds
▶ want your feedback on this presentation

So I…

▶ like building stuffs
▶ started a PhD on incremental builds

▶ want your feedback on this presentation

So I…

▶ like building stuffs
▶ started a PhD on incremental builds
▶ want your feedback on this presentation

Incremental package builds

Incremental

adjective […] occurring in especially small
increments.

noun the amount or degree by which
something changes;

Incremental

adjective […] occurring in especially small
increments.

noun the amount or degree by which
something changes;

Incremental build systems

▶ Works better with small steps
▶ Can reuse older build products
▶ Can detect what needs to be built

Plan

Firefox – Works better with small steps
i3 – Can reuse older build products

Nix store – Can detect what needs to be built

Firefox – Small steps

Building Firefox takes very long

50s unpack 1 min
1s patch

156s configure 2 min 30 s
4006s build 1 hour 6 min

31s install
8s fixup

We need checkpoints!

We need checkpoints!

We need checkpoints!

We need checkpoints!

Trivial idea

We could split each package phase in a different
derivation…

▶ Only a small, local fix
▶ Not clean for /nix/store
▶ Already done by external wrappers (firefox)

Trivial idea

We could split each package phase in a different
derivation…

▶ Only a small, local fix
▶ Not clean for /nix/store
▶ Already done by external wrappers (firefox)

Incremental builds is about small steps

▶ Nix is incremental at the package level.
▶ Nix is a package manager

▶ Build systems are incremental at command
level.

▶ let’s use that!

Incremental builds is about small steps

▶ Nix is incremental at the package level.
▶ Nix is a package manager

▶ Build systems are incremental at command
level.

▶ let’s use that!

Build systems details – make

1. pros:
▶ well known

2. cons:
▶ requires previous builds as an input
▶ uses timestamps to detect changes

Build systems details – ccache

ccache memoizes compiler invocations
sccache can share it’s cache on the network
nix is much like sccache

Build systems details – nix-make

Build systems details – nix-make

let {
inherit (import ../../lib) compileC link;

hello = link {
objects = compileC {

main = ./hello.c;
};

};

body = [hello];
}

Build systems details – nix-make

1. pros:
▶ very small steps
▶ compatible with nix

2. cons:
▶ every intermediate .o file ends up in the store
▶ requires to port projects to nix-make

Build systems details – bazel

Build systems details – bazel

1. pros:
▶ caches arbitrary commands
▶ uses sandboxing to guarantee correctness

2. cons:
▶ conflicts with nix

bazel = nix + build system

Intermediate solution

▶ Use caching in the build system
▶ Control caching from nix-build

Easy to implement, if we trust the build system.

Allow caching inside nix-build

still a work in progress

i3 – Reusing old builds

The issue

Requirements

▶ Need to patch i3 for an annoying bug
▶ Can only be tested on this machine
▶ Needs to be included in NixOS config

Typical debug session

▶ build a custom version (nix-shell)
▶ write an overlay for that package (nix-build)
▶ modify nixos to use it, and use debug flags

(nixos-rebuild)
▶ test and restart

Current options

We need an easy solution to achieve simple, local
package development:

1. Mount the nix store RW
2. Insert a symlink in the store
3. Configure services with paths outside the store

Hacky !!

Current options

We need an easy solution to achieve simple, local
package development:

1. Mount the nix store RW

2. Insert a symlink in the store
3. Configure services with paths outside the store

Hacky !!

Current options

We need an easy solution to achieve simple, local
package development:

1. Mount the nix store RW
2. Insert a symlink in the store

3. Configure services with paths outside the store

Hacky !!

Current options

We need an easy solution to achieve simple, local
package development:

1. Mount the nix store RW
2. Insert a symlink in the store
3. Configure services with paths outside the store

Hacky !!

Current options

We need an easy solution to achieve simple, local
package development:

1. Mount the nix store RW
2. Insert a symlink in the store
3. Configure services with paths outside the store

Hacky !!

Current options

We need an easy solution to achieve simple, local
package development:

1. Mount the nix store RW
2. Insert a symlink in the store
3. Configure services with paths outside the store

Hacky !!

Existing tools

git rebase --interactive brings you right at
the conflicting commit, in a fake environment
nix-shell -A setups the right environment to
build a package. But you can not write to the store

Solving the nix-shell issue

To make nix-shell more handy, it could generate a
random $out on each invocation, and allow writes
to that store location.
We want a trade-off between correctness and ease
of use.

nix build --hack i3

Nix* “OSI” model

nix-shell is a zipper

Going further

nixos-rebuild test --hack i3

Drop me in a shell where I can patch i3, then use
that for this nixos version.

And even further

We can even use caching when implemented! A
“clean” nix-build could reuse results cached by a
“hacky” build.

TL;DR: Never compile the same build step twice.
Well, if implemented.

And even further

We can even use caching when implemented! A
“clean” nix-build could reuse results cached by a
“hacky” build.
TL;DR: Never compile the same build step twice.

Well, if implemented.

And even further

We can even use caching when implemented! A
“clean” nix-build could reuse results cached by a
“hacky” build.
TL;DR: Never compile the same build step twice.
Well, if implemented.

Nix store – Track changes

/nix/store has many similar packages

diffoscope /nix/store/4w573p7v5jjjkph5ndzmbwg55v2ids1y-poppler-data-0.4.7 /nix/store/ccc9py7hfgd5v4q7hk2fv3l4rjllh12i-poppler-data-0.4.7
--- /nix/store/4w573p7v5jjjkph5ndzmbwg55v2ids1y-poppler-data-0.4.7
+++ /nix/store/ccc9py7hfgd5v4q7hk2fv3l4rjllh12i-poppler-data-0.4.7
��� lib
� ��� pkgconfig
� � ��� poppler-data.pc
� � � @@ -1,8 +1,8 @@
� � � -poppler_datadir=/nix/store/4w573p7v5jjjkph5ndzmbwg55v2ids1y-poppler-data-0.4.7/share/poppler
� � � +poppler_datadir=/nix/store/ccc9py7hfgd5v4q7hk2fv3l4rjllh12i-poppler-data-0.4.7/share/poppler
� � �
� � � Name: poppler-data
� � � Description: Encoding files for use with poppler
� � � Version: 0.4.7
� � �
� � � -Cflags: -DPOPPLER_DATADIR=/nix/store/4w573p7v5jjjkph5ndzmbwg55v2ids1y-poppler-data-0.4.7/share/poppler
� � � +Cflags: -DPOPPLER_DATADIR=/nix/store/ccc9py7hfgd5v4q7hk2fv3l4rjllh12i-poppler-data-0.4.7/share/poppler

/nix/store has many similar packages

Nix store --optimize

$ du -shc /nix/store/{X,Y,Z}-poppler-data-0.4.7
12M /nix/store/4w573p7v5jjjkph5ndzmbwg55v2ids1y-poppler-data-0.4.7
60K /nix/store/ccc9py7hfgd5v4q7hk2fv3l4rjllh12i-poppler-data-0.4.7
60K /nix/store/pshrgbbmvkxp6lf4hzwn04560brf52lp-poppler-data-0.4.7
13M total

Nix store --optimize

Mass rebuilds use a lot of network.

Every week, unstable branch is merged into master.
Every week, nixpkgs master receives mass-rebuild
commits.
Updating once per month makes you download a
full new distro each time.
Can we do better that that ?

Binary diffs of substitutes

By storing and sharing diffs of binary packages, we
could save bandwidth and hydra space.

Content addressed storage
We can even go further for derivations whose only
difference is their $out.

Content addressed storage

CAS & change propagation

CAS & change propagation

Content addressed storage

1. Pros:
▶ Does not propagate changes to dependencies
▶ Less compiling
▶ Faster updates
▶ Not too difficult to implement
▶ Outsourcing reproducibility is easy

2. Cons:
▶ Changes Nix
▶ Real impact is unknown

CAS & refactorings

CAS & Cached builds

Caching builds cam make them less stable
(reproducible)
Content addressed store would help to catch
unstable builds

Conclusion

There are still a lot of possible improvements to nix.
I have started to work on cached builds, and CAS is
under RFC.
Comments welcome.

Questions ?

	Incremental package builds
	Firefox – Small steps
	i3 – Reusing old builds
	Nix store – Track changes
	Questions ?

