Incremental Package Builds

Guillaume Maudoux
@layus

NixCon 2017

g/ N
.
v,
JBrussels
L]
Louvain-la-Neuve
Munich
-

A -

Louvain-la-Neuve hold a huge bike event

Olayus

laius (0)) a long, vague and emphatic speech

Olayus

laius (0)) a long, vague and emphatic speech

layus a nixpkgs contributor

Olayus

laius (0)) a long, vague and emphatic speech

layus a nixpkgs contributor

| contributed to build a castle in France

So l...

» like building stuffs

So l...

» like building stuffs
» started a PhD on incremental builds

So l...

» like building stuffs
» started a PhD on incremental builds
» want your feedback on this presentation

Incremental package builds

Incremental

adjective [..] occurring in especially small
increments.

Incremental

adjective [..] occurring in especially small
increments.

noun the amount or degree by which
something changes;

Incremental build systems

» Works better with small steps
» Can reuse older build products
» Can detect what needs to be built

Plan

Firefox — Works better with small steps
i3 — Can reuse older build products
Nix store — Can detect what needs to be built

Firefox — Small steps

Building Firefox takes very long

50s unpack 1 min
1s patch
156s configure 2 min 30 s
4006s build 1 hour 6 min
31s install
8s fixup

We need checkpoints!

need checkpoints!

We need checkpoints!

checkpoints!

Trivial idea

We could split each package phase in a different
derivation...

Trivial idea

We could split each package phase in a different
derivation...

» Only a small, local fix
» Not clean for /nix/store
» Already done by external wrappers (firefox)

Incremental builds is about small steps

» Nix is incremental at the package level.
» Nix is a package manager

Incremental builds is about small steps

Nix is incremental at the package level.
Nix is a package manager

v

v

v

Build systems are incremental at command
level.
let's use that!

v

Build systems details — make

1. pros:

» well known

2. cons:

» requires previous builds as an input
» uses timestamps to detect changes

Build systems details — ccache

ccache memoizes compiler invocations
sccache can share it's cache on the network

nix is much like sccache

Build systems details — nix-make

edolstra / nix-make

<» Code (0 Issues o i1 Pull requests o [Projects 0 L Insights
Experimental Nix bulld management stuff

O 15 commits ¥ 1 branch >0 releases
|

Branch: master = New pull request
H edolstra Produce more sensible store path names

i} examples *“dependencyClosure’ now allows a search path, e.q..

b Produce more sensible store path names

Build systems details — nix-make

let {
inherit (import ../../1ib) compileC link;

hello = link {
objects = compileC {
main = ./hello.c;
s
s

body = [hello];
}

Build systems details — nix-make

1. pros:

» very small steps

» compatible with nix
2. cons:

» every intermediate .o file ends up in the store
» requires to port projects to nix-make

Build systems details — bazel

e : 2
¥ Bazel Documentation ~ Contribute S W 8 Search

{Fast, Correct} - Choose two

Build and test software of any
size, quickly and reliably

GET BAZEL GET STARTED

Build systems details — bazel

1. pros:

» caches arbitrary commands
» uses sandboxing to guarantee correctness

2. cons:

» conflicts with nix

bazel = nix + build system

Intermediate solution

» Use caching in the build system
» Control caching from nix-build

Easy to implement, if we trust the build system.

Allow caching inside nix-build

Nix-build
Sandbox
make
ccache
Sanity checking

External cache

still a work in progress

i3 — Reusing old builds

The issue

Requirements

» Need to patch i3 for an annoying bug
» Can only be tested on this machine
» Needs to be included in NixOS config

Typical debug session

> build a custom version (nix-shell)

» write an overlay for that package (nix-build)

» modify nixos to use it, and use debug flags
(nixos-rebuild)

» test and restart

Current options

We need an easy solution to achieve simple, local
package development:

Current options

We need an easy solution to achieve simple, local
package development:

1. Mount the nix store RW

Current options

We need an easy solution to achieve simple, local
package development:

1. Mount the nix store RW
2. Insert a symlink in the store

Current options

We need an easy solution to achieve simple, local
package development:

1. Mount the nix store RW
2. Insert a symlink in the store
3. Configure services with paths outside the store

Current options

We need an easy solution to achieve simple, local
package development:

1. Mount the nix store RW
2. Insert a symlink in the store
3. Configure services with paths outside the store

Current options

We need an easy solution to achieve simple, local
package development:

1. Mount the nix store RW
2. Insert a symlink in the store
3. Configure services with paths outside the store

Hacky !!

Existing tools

git rebase --interactive brings you right at
the conflicting commit, in a fake environment

nix-shell -A setups the right environment to
build a package. But you can not write to the store

Solving the nix-shell issue

To make nix-shell more handy, it could generate a
random $out on each invocation, and allow writes
to that store location.

We want a trade-off between correctness and ease
of use.

nix build --hack i3

Nix* “OSI” model

nixops -

nixos-rebuild - NiIXOps

nix-build | XS

make _ nixpkgs
i3

nix-shell is a zipper

nix-shell

make

Going further

nixos-rebuild test —--hack i3

Drop me in a shell where | can patch i3, then use
that for this nixos version.

And even further

We can even use caching when implemented! A
“clean” nix-build could reuse results cached by a

“hacky” build.

And even further

We can even use caching when implemented! A
“clean” nix-build could reuse results cached by a

“hacky” build.
TL;DR: Never compile the same build step twice.

And even further

We can even use caching when implemented! A
“clean” nix-build could reuse results cached by a

“hacky” build.
TL;DR: Never compile the same build step twice.

Well, if implemented.

Nix store — Track changes

/nix/store has many similar packages

diffoscope /nix/store/4w573p7v5jjjkphbndzmbwgb5v2idsly-poppler-data-0.4.7 /nix/s
--- /nix/store/4w573p7v5jjjkphbndzmbwgbbv2idsly-poppler-data-0.4.7
+++ /nix/store/ccc9py7hfgd5v4q7hk2fv3l4rjllhi2i-poppler-data-0.4.7
lib
pkgconfig
poppler-data.pc
@@ -1,8 +1,8 @@
-poppler_datadir=/nix/store/4w573p7v5jjjkphbndzmbwgb5v2idsly-poppler-data-0
+poppler_datadir=/nix/store/ccc9py7hfgdbv4q7hk2fv314rjllhi2i-poppler-data-0

Name: poppler-data

Description: Encoding files for use with poppler
Version: 0.4.7

-Cflags: -DPOPPLER_DATADIR=/nix/store/4w573p7v5jjjkphbndzmbwg55v2ids1y-popp]l
+Cflags: -DPOPPLER_DATADIR=/nix/store/ccc9py7hfgdbv4q7hk2fv314rjllh12i-poppl

/nix/store has many similar packages

binary cache | | network usage | | store usage

i3 > i3 > i3

Nix store ——optimize

$ du -shc /nix/store/{X,Y,Z}-poppler-data-0.4.7

12M /nix/store/4w573p7v5jjjkphbndzmbwgb5v2idsly-poppler-data-0
60K /nix/store/cccIpy7hfgdbv4q7hk2fv314rjllh12i-poppler-data-0
60K /nix/store/pshrgbbmvkxp6lf4hzwn04560brf521p-poppler-data-0
13M total

Nix store ——optimize

| binary cache | | network usage | | store usage (optimized) |

€

Mass rebuilds use a lot of network.

Every week, unstable branch is merged into master.
Every week, nixpkgs master receives mass-rebuild
commits.

Updating once per month makes you download a
full new distro each time.

Can we do better that that ?

Binary diffs of substitutes

By storing and sharing diffs of binary packages, we
could save bandwidth and hydra space.

network usage

binary cache
‘ 4 diff based

& binary diffs

store usage (optimized)

Content addressed storage

We can even go further for derivations whose only

difference is their $out.
LJ NixOS /rfcs

Code 11 Pull requests 11 Projects 0 Insights

Intensional Store

[yL:ELN wmertens wants to merge 2 commits INt0 nNixos:master frOM wmertens:master

5 Conversation 12 © Commits 2 () Files changed 1

wmertens commented on 11 Aug

© watch | 35

A practical proposal to store bulld products under thelr output hash instead of thelir input hash.

LY

Content addressed storage

| Content addressed store.

Y

CAS & change propagation

]]
=

stdenv'.drv

stdenv stdenv'

CAS & change propagation

xorg.drv xorg'.drv
i3.drv i3'.drv

stdenv.drv stdenv'.drv

xorg

Content addressed storage

1. Pros:
» Does not propagate changes to dependencies
» Less compiling
» Faster updates
» Not too difficult to implement
» Outsourcing reproducibility is easy
2. Cons:

» Changes Nix
» Real impact is unknown

CAS & refactorings

quests Issues Marketplac

H NixOs / nixpkgs @ Unwatch~ | 141 * Star 1967 YFork 2306
Code Issues 1,987 1% Pull requests 498 Projects 9 Insights
Just strip everything by default, fully tested version :-) =]

[yKel-LLl layus wants to merge 4 commits NGO Nixos:staging frOM layus:fix-strip

&4 Conversation 35 -0 Commits 4 Files changed 11 +125 -37 mEEE

P‘, =
ﬁ ! layus commented on 10 May 2016 « edited Contributor Reviewers
No reviews
This Is the same PR as #15087, but fully tested and modified to take into account the discovered bugs.

Assignees
Stdenv now supporis the dontStripPath attribute which is the black-list version of the former

stripDebuglist and stripAlllist (maintained for compatibility). -““"ﬂ'

CAS & Cached builds

Caching builds cam make them less stable
(reproducible)

Content addressed store would help to catch
unstable builds

Conclusion

There are still a lot of possible improvements to nix.

| have started to work on cached builds, and CAS is
under RFC.

Comments welcome.

Questions ?

	Incremental package builds
	Firefox – Small steps
	i3 – Reusing old builds
	Nix store – Track changes
	Questions ?

